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Selection of a Distribution Fumotion to Mnlrdse

an Ezpctation Subject to Side Conditio

Herman Chernoff and Stanley Reiter

Stanford University

I. The following problem arises in a bioassay problem. We wish to

choose a c.d.f. F of x so as to minimize E where,

E 5 g(x) d G(x)

subject to

(i) x d G(x) -

(2) jx 2d G(x) c 2

where c and c are given positive constants c > and

g(x) l- e

,7e are also interested in finding that c.d.f. which makes E a maximiu,

subject to the constraints above.
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We obtain the following result.

In Section II it is shaen that the mni4mizing c.d.f. wets and

that for this c.d.f.. the probability is concentrated at two points, one

of which is zero. The minimizing c.d.f. is,

/ 0 for x < 0

22

for x ? C

In Section III we find that the maximizing distribution does not

exist, but that the maximum can be approximated as closely as we like

by a two point distribution satisfying the constraints. The approxi-

mation of the maximum to within 6 > 0 is obtained by placing very

large probability at a,- () and the remaining probability at a value

of x z3uficiently large to satisfy the conditions on the tmpocted

2
value of x

In Section IV we compute the value of the minimum for various

values of the parameters,

We find those values of -3x for which

1 - e is equal to .90, .85, .80,...,.0l

respectively. For each value of -/x so obtained we compute fg d F

as a function of the coefficient of variation. The functions are plotted

on the accompanying graphs.



II. A. We consider the following problem: given g1 "' 'gcontinuous

real valued functions defined on the interval [a,bj we wish to find that

c.d.f. F, which minimizes

(1.1) Sgl d G

subject to the constraints

(1.2) k - gj d 5 g i G * ,ooI

for G a,b' the class of c.d.f,'s on La,b].

We shall show that the minimizing c.d.f. is discrete, concentrating

probability on at most n points of the interval Lab].

Proposition 1. The class abJ is cnvex and aoee~at in the topoleof of

convergence in distribution, [The compactness of Proposition 1 is a

restatement of Hellyts theoremJ

Letth mppngT:~Ca,bJr*IR be given by T(* (gl(x)dG(x), 2 G..,gdC'

for Gfa, when R is n-dimensional Euclidean space.

Denote by Y the image of *LavbJ under T. We shall sou~times denote

points of T by y. The transformation T is linear and therefore is con-

tinuous and preserves convexity. Hence we have:

Proposition 2. The set Y is convex, closed and oounded.

The restrictions (1,2) define a closed convex subset of T; call

this set T.

We restate our problem as follows. We wish to find that point y

in T whose first coordinate is a minimum. Since T is closed and

bounded a minimizing point exists ard is a boundax point of 71 and also

of T so long as T is non-null.

~-I
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We characterize the minim=m as follows. It is assmed at a boada

point Y of T. Hence there is a supporting hyperplane H for T cantain

y. But H is at most n diensonal. Therefore y can be written as a

convex oombination of at most n extreme points of Y which lie in H,

But it is easy to see that all extreme points of Y correspond to one

point distributions, i.e. points of the forms

(g1 (x)d 5 (x) .. gfn(x)d 5 (x)) -g~)

where

0 for x < c

C for x >_c

Thus y may be given by

ny . glc" x , 5 (jX>,..,40O gn (x a (x))

nnY. ;((-"(cj),...,9n(cj)
J-1

where

From which it follows that

F wt~k S.(X)
Jul



is the adnindZing distributitn.

B. Consider the following probim. Lot

g1 (x) 1 - e

g2(x) - x

g3(x) _ x2

be defined for x >-O.

Let -. be the class of c.d.f.'s on [O,oC). ue wish to find that

c.d.f. F in 4 which minimizes

fgl d F

subject to

g2 d F c

and

fg 3 d F -e

20

where c2 2C.

In order to apply the results of A we shall first consider a

modification of this problem as followa

Let gl. g2, g3 be defined for x6LO,b] for sme b > 0, and let 1, be

1,vplac~d by JO,bJ' the class of c.d.f. 's on [O,bj. IRx thli modification

the results of II assure us that the miniimls exists and that it is given

by a discrmte distribution concentrated at not more than three point-4



In the present ease this result can be sharpeoned. 'he minmiaIng

c.d.f. is concentrated at just two points, ne of which is 2eW0. he

following argument establishes this.

We know that there is a supporting plane of Y at the minimum y,

that is, for some Al' A2 A3 an k.

1~ Y1 * ;12 Y2  yj , k

;'y+ 'A2 72  3 3 rk for all ye,

Since the first coordinate y1 is being minimized we know that 0 0,

and may normalize so as to make 1 1. Also, y can be written as a

convex combination of extrece points of Y satisfying the (same) linear

relation. We ask, "For how many x's in [Obj is the function

(1) g(x) + 'A2 x + 23 x
2

minimized?" We show that there are at most two, one of which is zero.

Differentiating with respect to x we find that the derivative,

(2) e *x +2 2 X - 0

is a convex function and has at most two roots. These cannot both give

mini -, for if they did, there must be a maximum of (1) between them

and hence a third root of (2). Thus, the case of two roots in the

interior of [O,bj corresponding to minima is excluded.

The following cases remain,
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Consider the possibility that the function (1) is minimized at three

points o, x, b, 0 < x - b.

We exclude this by noting that there would then be a relative

maximum of (1) between 0 and x and hance a root of (2) between 0 and x,

and similarly, between x and b. This implies that there are three

distinct roots of (2), which is false.

We are left with three cases; First that the minmun is assumed

at Just one pointwhich is the case when c2 = c1o In this case the

minimiing distribution is 5 (x) and the mirn is (1 - e )o
C,

There remain two possibilities, that the minimum involves the

pair of points 0, and x or else that it involves the pair x and b.

We shall show that there is a value of b, say bo, so that for b > b0

the minimum does not involve b,.

Suppose b > c 1 . (If b < c 1 the restrictions cannot be satisfied.)

Suppose we use two points, 0, x, with probabilities 1 - p and p

respectively. The restrictions are then sufficient to determine x and

p. We obtain

p x - c 2

C2

c1

C2
C

So that the value of E - g., d F obtained when 0 is involved is

c2

2_

SthttevleoE 5 1 dFobtie hn0i novdI



From strict ocncavit' of g, it follows that

02

Let

0 2

Given a > 0 we may select bo(S) such that

b 0 > 1 ,

Then if we use x and b with probabilities 1 p and p respectivelT

we find that where b > b0

(l- p) 2 + p b 2

implies

C2  C02p b ' < .

C2

p > 1~'

pb

From the first restriction it follows that x is forced to be co to

Cl, i.e.



( - p) x + p b-1

or,

S- c. 1  . . 1) - -

Ix - C ciIj

( + )

Thus x can be made to differ arbitrarily little from c as 8-- 0.

Now since gl(x) is monotone increasing

p g1 (x) + (1-p) g1 (b) > gl(x) > g(c) -

for C sufficiently small, say 6 0 . Thus, we find that usIng 0

and x gives a lower value of E than that obtained using x and b for

b > bo(eo).

Thus, the minimum is attained by a c.d.f. concentrating probability
2 2c  c c

(1 -- ) at 0 and probability Z at x - . The minimumis thenC 2  c2

A2
(l - e) whichi i indepenadt of b.

C 
2

C. We have chown in B that for the problem with LO,cv) replaced by

[O,bj, the minimizing c.d.f. exists, that it is a distribution con-

centrated at 0 and one other point and that the minimum is
02  2
CC

(1 -) which is independent of the bound b.
e2a

IWe now show that this is in fact the minimum over all Go,,*



Take any G Sj satie fyng

Jx d G Ci

x2 d G c 2

Then fg, d G exists.

Given > 0 we can find b so large that

co

x 2d G
fx'dG<£E

x~ d G 1

gdG~a

Thus,

b
c 1 - S fx d G c l0

C2 - x2 d G. c < c02 2

and by the previous result,

2

ge d G < g1 d G
2



Since this is true for every 6 > 0 it follows by continuity that

7c 2
(1- g d G for all Gt

2 0

and hence that the two point distribution yields the minimum.

III, We consider the problem to find that c.dfo F(x) which maxidizes

E-(l-e A)dF(x)

subject to the constraints

(1) Ix d F(x) c

2(2) Jz d F(x) - 02

where c rnd 02 are given positive constants, r2 
> c.

Qe notice first that if .;e ignore the constraint (2) then the

maximizing c.dof° is

0i for x <- c£.(x)-o
C, 1 for x ; c,

-/x

This follows readily from the fact that 1 - a is a concave function.

Imposing an additional constraint, namely (2) cannot increase the
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maximum. However, we notice that we can gqt as close as we please to

the maximum,, i.e., given > 0 we can find x and p such that

(1'P) (cl- +) P X " el

(1-p)(c,S) 2 + p x2 n C2

and given £ > 0 we may take 5 > 0 such that

(1 - e )(1-p) + (1 -e )p> (l - 8

Thus, the second constraint roquires at least a two point distribution,

while the concavity of g1 precludes actually attaining gl(c1) wfith such a

distribution. Hence the maximizing distribution does not exist. The

maximum may be approximated as closely as we like by a two point di.-tri-

bution satisfying both constraints.

IV. Computational Results.

Let

cI

-2 2

22 2 
2

then

I



c f i-

2 - + 2
(1 ... .. .. 0

We shall consider the values of i and 4 for which E is

o90, 085, .80,..oa05, .01, i.e. those values of Yfor which

F(Y) - 1 - e " *' .90, .85, o80,o.,,,o05, .01

For each value of Y so obtained ve plot in the accompanying graphs

the expected value E

S-' (1v 2 )

I+ v 
2

as a function of the coefficient of variation, v2, for values 0 S v
2

It is interesting that when the expectation corresponding to a

valu of I is small, the effect of increasing the coefficient of

variation is also small. For example, if X is such that Z Is .15

then E is reduced to .098 if the coefficient of variation is in-

creased from 0 to 6,

Ir the accomparqng graphs we also compare E as a function of

the coefficient of variation of x when the minimdsizng distribution is

used with the corresponding quatities when x has the Gamma distribution,

Suppose that x has a Gamma distribution, L~e., the density f of x

is given by

n )f(,x) -- >O



Then

E(x) -

The coefficient of variation is given by

2 2

2 t 0(.

We also have

1

1
y2 r

v2E(x)°

Suppose we are given a mean E(x) for which 'yields expectation F.

F - e 

ix

was c e

Nwe we assign a coefficient of variation v . Then the value of F is
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m1~{14(x) v2 V

wbe.,4~x)- -log(1-F

where

I__



V. The methods and results of this paper are Molar to those of

P. C. Rosbloom, "Qualques classes de problbo extzAuz,,n Bull. Soc.

Mth., France 79 (1951) 1-58, 80 (1952) 183-2 and S. Karzli and

L. S. Shaply, "Geosetry of Mmenut Spaces,," Mmirs of the Amer. Math.

Soc., No. 12, 1953, pp. 1-. o

2!I
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